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1. INTRODUCTION 

Rigid polyurethane (PU) foam has been widely used in our 
laboratories for encapsulating electronic components because of its 
light weight and excellent insulation property. Quite often, the foam 
in use is not sealed in an enclosure, or there is a time interval before 
it is sealed. Since the foam does not usually have 100-percent 
closed-cell structure, there is always a risk of moisture penetration. 
Questions that arise are how fast the moisture penetration is and what 
vapor barrier can be applied to reduce the rate. This report presents 
our measurements of the water-vapor transmission rates (WVTR's) of the 
PU foams of various densities and the effectiveness of several 
vapor-barrier coatings. 

2. EXPERIMENTAL 

2.1 Materials 

The materials used in this work are described in table I. The 
thermal properties of the butyl rubber were determined by differential 
scanning calorimetry (DSC). 

TABLE I.  MATERIALS USED IN POLYURETHANE-FOAM STUDY 

Name Supplier Composition 

Isofoam PE series  Isocyanate Products, 
Inc. 

Polyether type polyurethane 
rigid foam: part A, prepolymer 
of TDI and ether gylcol resin; 
part B, ether glycol resin with 
some diamine and water; closed- 
cell content, 95% min 

Butyl-rubber       U.S. Polymeric 
coating compound 
PC8101/66, black 

8.17 lb/gal, 35% solids by 
volume in toluene, carbon 
filled; parts A/B containing 
different catalysts, used in 
wt ratio of 24.4:23.4 with 
1 g of accelerator 

Butyl rubber 
Foamseal 57-80 

Foster Div., Amchem 
Products, Inc. 

Part A, 8.5 lb/gal, 41% solids 
by volume in xylene, aluminum 
filled; part B, activator; 
A/B wt ratio of 23.5:1 

Hysol PC-12-007    Hysol Corp. Bisphenol-A type epoxy cured 
cured with polyamide and 
others, 100% solids 

Daran 220 latex    W. R. Grace & 
Co. 

Polyvinylidene chloride coating 
latex, 60 to 62% solids 

Saran resin F310   Dow Chemical Co. Vinylidene/acrylonitrile 
copolymer, white powder, heat 
seal range 250 to 350°F 



2.2 Preparation of Foam Specimens 

Foam specimens used for the determination of WVTR's are discs 
of 5.25-in. diameter and approximately 0.81-in. thickness. The foam 
was prepared with a Martin Sweets Co. model 2-3L foam machine capable of 
delivering 10 g of mixed foam ingredients to an accuracy of 1 percent at 
preheat temperatures as prescribed by the PU foam material supplier. 
The machine was fitted with a Miniature model, 7/8-hp mixing head. A 
preset amount of the mixed ingredients of the PU foam material was 
delivered from the mixing head to a mold, which was precoated by 
spraying with a thin layer of mold release agent MS-122 
(Miller-Stephenson Chemical Co., Inc.). The mold was an aluminum ring, 
5.25 in. i.d. x 6.27 in. o.d. x 0.85 in. high, clamped on each side 
with an aluminum plate of 0.340-in. thickness. The total weight of the 
clamped mold was about 5.7 lb. For the preparation of 6-lb/ft3 foam, 
Isofoam PE-6 was used, and the mold was preheated to 70°C. For the 
24-lb/ft3 foam, Isofoam PE-18 was used, and there was no preheating of 
the mold. As soon as the foam expanded to the filling hole of the mold, 
it was put in an oven at 70°C for a 4-hr cure (the filling hole was 
plugged for the 24-lb/ft3 foam). 

After curing, the foam disc was removed from the mold, examined 
for defects, and machined to remove the sprue and to make the two sides 
skinless, smooth, and parallel. The foam density was checked and found 
usually to be within a ±5-percent limit. 

2.3 Application of Water-Vapor-Barrier Coating 

Different coating materials required some different coating 
techniques. Satisfactory coatings were obtained with butyl rubbers 
PC8101/66 and Foamseal 57-80 and epoxy Hysol PC-12-007. The coating 
method can be generally described as follows: The machined disc 
specimen was wiped clean and put back into the mold ring. Shim pieces 
were inserted under the foam to make the foam surface lower than the 
mold ring by the thickness of the coating to be applied. The components 
of the coating materials were blended according to the manufacturer's 
instructions, and the blend was deaired under vacuum. To make a coating 
0.010 to 0.020 in. thick, two to three coats were applied, with each 
coat dried at room temperature overnight. The final coat was leveled 
with the rim of the mold ring by drawing a rod across the surface. 
After being dried or gelled, the coated specimen was removed from the 
mold ring and cured for 4 hr at 70°C in an oven. (The manufacturers 
recommend a cure cycle of 2 wk at 25CC for the butyl-rubber coating. 
The 70°C cure cycle is equivalent to the slow room-temperature cure.) 



2.4 Water-Vapor Transmission-Rate Determination 

The ASTM C355-64 desiccant method was followed, except for the 
design of the test dishes. For the convenience of mold making, disc 
specimens were prepared, and hence the test dishes used were similar to 
the dish prescribed in ASTM E96-66, which is a method for the WVTR 
determination of materials in sheet form. The test dish, as shown in 
figure 1, was cast with a glass-filled rigid epoxy, Epocast 2 20 of 
Furane Plastics. The template ring holder was made of Plexiglas. After 
120 g of anhydrous calcium chloride (12 mesh available and used instead 
of the 8 mesh suggested) and 10 g of indicating Drierite were placed in 
the dish, the disc specimen was put in place and sealed with an 0-ring 
on each side under the pressure of the template ring holder tightened 
with four Allen setscrews. The 0-ring used was made of nitrile rubber 
(Shore A 70). The small gap between the tightened ring holder and the 
dish was sealed with an ample amount of Dow Corning 3145 RTV 
adhesive-sealant material. 

4-7/8 in. / rL- PLEXIGLAS 

5 in. 

9/16 in. 

T 
NITRILE 0-RING 

5-1/4 in. 

1/2 in. —l V 
6-3/4 in. 

1-7/8 in. 

N  EPOXY 

Figure 1.  Test dish for water-vapor transmission-rate determinations. 

The sealed specimen assembly (fig. 2) was weighed and placed in 
a temperature-humidity chamber, Hotpack model No. 47559. The chamber 
was maintained at 70 ± 1°C and 91-percent relative humidity (RH) and 
monitored by a recorder. The assembly was removed at the end of each 
week, weighed, and replaced immediately. The test was continued until a 
nominal steady state was shown by plotting the weight against elapsed 
time (usually 4 to 7 wk). At the end, the specimen was visually 
examined, and the desiccant was checked to see that no excessive amount 
of water was absorbed. Three specimens were normally tested for each 
foam sample. 
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Figure 2.  Specimen assemblies ready for water-vapor transmission- 
rate determinations. 

The slope of the straight line was read from the plot of the 
weights against elapsed time. The WVTR was calculated according to the 
equations given in the ASTM method: 

WVTR = G/tA, (1) 

where 

G 
t 
A 

weight change in grams, 
time elapsed in hours, 
test area = IT(5/2)2 in.2 = 1.266 x 10~2 m2, 

Permeance = WVTR 
s(Ri - R2) ' 

(2) 

where 

S = saturation vapor pressure at test temperature, 233.7-mm Hg, 
Rj = relative humidity at source = 91 percent, 
R2 = relative humidity at sink = 0 percent. 



3.  RESULTS AND DISCUSSION 

3.1 Coating Material and Application 

The primary interest of this work is to select and test some 
polymeric materials that are commercially available and inexpensive, 
have low water-vapor permeability, and can be easily applied on PU foair 
to form a continuous film as a vapor-barrier coating. The vapor 
transmission through homogeneous films of polymeric materials is of the 
activated diffusion type—namely, a process in which vapor dissolves in 
the polymer and then diffuses through and evaporates from the other 
surface. Therefore, transmission depends on the solubility of vapor and 
on the diffusivity of the dissolved vapor in the polymer medium. 
Polymer properties that affect the transmission include density, 
molecular weight, chemical structure, crystallinity, orientation, 
crosslinking, and the presence of plasticizers.1 

Butyl rubber is a polymer known for its low water-vapor 
permeability. Its application as a water-vapor-barrier coating has been 
more attractive since the development and introduction of 
low-molecular-weight butyl rubber (butyl LM) with room-temperature 
curing.  The DSC data show it to be thermally stable up to 200°C. 

Because of the inherent oxidative aging stability, butyl LM 
coating formulations have been developed particularly for the protection 
of PU foam used as roof insulation.2,3 From the recommendation of the 
butyl producer, Exxon Chemicals, samples of butyl coating compounds 
PC8101/66 and Foamseal 57-80 were obtained. The compounds contain 
carbon or aluminum filler, which is not essential to our applications 
and could be removed if so desired. By the use of a brush-coating 
method, very satisfactory coatings were prepared on the foam specimens 
for the WVTR determination. The coating thickness was varied from 0.010 
to 0.020 in. with multiple coats. 

Polyvinylidene chloride (PVDC) also is noted for its very low 
vapor permeability. A PVDC latex, Daran 220 (made by W. R. Grace and 
Co.), and an experimental latex, XD-4653 (made by Dow Chemical Co.), 
were tried as coatings.  They all formed poor coatings on the foam with 

1#. Yasuda and V. Stannet, Encyclopedia of Polymer Science and 
Technology,   Vol.   II,  John  Wiley  S Sons,   Inc.,  New York   (1970),   317-327. 

ZH.   H.   Brillinger,  Am.   Paint  J.    (1970),  2-11. 
3tf. H. Brillinger, Butyl Coatings for Protection of Spray Applied 

Polyurethane Foam, Proceedings of SPI 3rd International Cellular 
Plastics  Conference,  26-29 September 1972,  Montreal,  Quebec,   III   (1972). 



bubbles and crazing. Similar problems were experienced with Saran F310 
(Dow Chemical Co.), which was used in solution in different organic 
solvent systems. Apparently, the film formation was too rapid with 
solvent trapped, and the adhesion to PU foam was poor. 

Epoxy is a popular coating material. Satisfactory coatings 
were prepared with Hysol PC-12-007, a good conformal coating compound. 
As shown later by the WVTR data, epoxy is a relatively poor vapor 
barrier for the foam in comparison to the butyl. 

3.2 Water-Vapor Transmission 

The WVTR's were measured at 70°C and 91-percent RH. Some early 
experiments were made at 51°C and 95-percent RH. The rough data 
obtained indicate that the rates at 51°C are only about 1/3 of those at 
70°C. The 70°C temperature is the upper limit of military storage. We 
believe that measurements made at the extreme storage temperature should 
be more revealing with regard to the difference of the coating 
materials. 

Tables II and III record all the WVTR data. Foams of 6- and 
24-lb/ft3 densities are most frequently used in our potting 
applications. It has been our practice that 24-lb/ft3 foam is obtained 
by foaming 18-lb/ft3 material (Isofoam PE-18) in a closed fixture. The 
1:4 ratio of the two foam densities is shown to have resulted in a 9:1 
ratio of their WVTR's—a tremendous effect of foam density. The foam 
used in this work is a polyether type PU that has been shown to have 
good hydrolytic stability. ** Lee and Lion have defined the term "foam 
diffusivity" in comparison to the diffusion constant of the base 
polymer. They have shown that the foam diffusivity of a closed-cell 
foam is related to the gas diffusivity in the base polymer, the 
solubility coefficient of the diffusing gas in the base polymer, and a 
foam density dependent factor. '  Of course, the theoretical analysis 

kA. B. Goldberg and P. F. Bruins, The Effect of Hydrolytic 
Degradation on the Dielectric Properties of Polyurethane Foams, SPE 
ANTEC, SPE Inc., 32nd Annual Tech Conference, Tech Papers, XX_ 
(May 1974),  298-300. 

5W. M. Lee and D. W. Lion, Mechanical Properties of Plastic Foams: 
A Model for the Effect of Aging, Proceedings of the 1971 Kyoto 
International Conference on the Mechanical Behavior of Materials, III 
(1971). 

eW.  M.   Lee,  J.  Cell.  Plast.,   9,  No.   3   (1973),  125. 

10 



TABLE II.  WATER-VAPOR TRANSMISSION RATES OF 24-lb/ft3 POLYURETHANE 
FOAM* AT 70#C AND 91-PERCENT RELATIVE HUMIDITY 

Nominal _              WVTR 
~     ^i                          ^. . , Specimen      ,„•.,         Permeance       , Coating        thickness *^          WVTR      ,    .      ,   reduction 

..  , No.     . , 2/-,„ u s   (metric perms      ... 
(in.) (g/mV24 hr)                    (%) 

(Foam without 
coating) 

Butyl (C)        0.010 
PC8101/66 

0.020 

Butyl (Al)        0.010 
Foamseal 
57-80 

0.020 

Epoxy Hysol      0.020 
PC-12-007 

1 30.0 0.14 
2 38.7 0.18 
3 46.1 0.22 

Av 38.3 + 8.1 0.18 + 0.04 

1 18.8 0.09 
2 20.0 0.09 

Av 19.4 + 0.8 0.09 + 0 

1 18.4 0.09 
2 22.3 0.10 
3 23.2 0.11 
4 15.1 0.07 

Av 19.8 + 3.7 0.09 ± 0.02 

1 24.0 0.11 
2 36.8 0.17 
3 31.4 0.15 

Av 30.7 + 6.4 0.14 - 0.03 

1 18.6 0.09 
2 14.3 0.07 
3 12.8 0.06 
4 12.0 0.06 

Av 14.4 + 2.9 0.07 ± 0.01 

1 22.9 0.11 
2 22.3 0.10 
3 27.7 0.13 

Av 24.3 + 3.0 0.11 ± 0.02 

49 

4H 

20 

62 

3 7 

*By ASTM C355-64  desiccant method;   nominal   thickness of plain foam specimen, 
0.810 in. 

of a closed-cell system is much simplified. In the actual WVTR 
measurements, complications arise due to the microscopic cellular 
heterogeneity, the presence of open cells, and possible water conden- 
sation and entrapment inside the foam. All these would contribute to 
deviations in the experimental results. In addition, imperfection in 
sealing of the specimens could be another factor that caused some large 
deviations in the data shown. 

Coating materials were tried such as low-molecular-weight butyl 
rubber, PVDC latices and solutions, epoxy, PU, and reclaimed rubber 
compound. Only the two rubber compounds, PC8101/66 and Foamseal 57-80, 
and one epoxy material, Hysol PC-12-007, were found to form good 
coatings on the PU foam.  Consequently, the WVTR's were measured with 

11 



TABLE III.  WATER-VAPOR TRANSMISSION RATES OF 6-lb/ft3 POLYURETHANE 
FOAM* AT 70°C AND 91-PERCENT RELATIVE HUMIDITY 

Coating 
Nominal 
thickness 

(in.) 

Specimen 
No. 

WVTR 
(g/m2/24 hr) 

Permeance 
(metric perms) 

WVTR 
reduction 

(%) 

(Foam without 
coating) 

Butyl (C) 
PC8101/66 

Butyl (Al) 
Foamseal 
57-80 

Epoxy Hysol 
PC-12-007 

0.020 

0.020 

0.020 

1 272 1.3 
2 365 1.7 
3 354 1.7 

Av 330 + i 51 1.6 ± 0.2 

1 24.1 0.11 
2 38.0 0.18 
3 43.5 0.20 

Av 35.2 + 10 0.16 ±0.05 

1 13.3 0.06 
2 21.6 0.10 
3 17.1 0.08 

Av 17.3 + 4.2 0.08 ±0.02 

1 90.1 0.42 
2 116.0 0.55 
3 63.8 0.30 

Av 90.0 + 26 0.42 i 0.13 

89 

95 

73 

*fly ASTM C355-64 desiccant method;   nominal   thickness of plain foam specimen, 
0.810 in. 

these coatings applied to the foam. All the coatings made significant 
reductions of the WVTR of the foam. The reductions range from 37 to 
95 percent, except in one test. The butyl-coating material suppliers 
recommend a coating thickness of 0.020 in. For comparison, the epoxy 
coating thickness was made the same. One half of this thickness appears 
to be definitely insufficient for the aluminum powder-filled butyl 
coating (Foamseal 57-80), whereas it makes no difference for the 
carbon-filled butyl (PC8101/66). Both butyl rubbers showed significantly 
higher effectiveness as vapor-barrier coatings than did the epoxy. 
Foamseal 57-80 appears to be somewhat better than PC8101/66 when the 
coating is thick enough. The aluminum filler in Foamseal 57-80 is known 
to have little effect on the electrical resistance of the resin 
system.7 For low density foam, the importance and necessity of a 
vapor-barrier coating are dramatically demonstrated by the magnitude of 
the rate reductions. Even an epoxy coating can make a 7 3-percent 
reduction of the WVTR of the 6-lb/ft3 foam. 

7H.  L.   Lee and K.   L.   Neville,  Handbook of Epoxy Resins, McGraw-Hill 
Book Co.,  New York   (1967),  14-33. 

12 



4.  CONCLUSIONS 

The WVTR measurements have shown that polyurethane-foam encapsulant 
alone cannot give satisfactory protection from moisture penetration. A 
vapor-barrier coating is necessary and is even more important for the 
low-density foams. Two butyl-rubber coating materials, PC8101/66 and 
Foamseal 57-80, and one epoxy, Hysol PC-12-007, were found to form good 
coatings on PU foam and give significant reduction of WVTR. 
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